Олимпиадные задания (III этап) **MATEMATIKA 9**

1-часть. Каждое задание оценивается 0,9 баллом

- 1. Какие две цифры нужно приписать справа к числу 2022, чтобы получилось число,
 - делящееся на 143?
- A) 46
- B) 68
- C) 24
- D) 02
- 2. Теплоход затратил 5 часов на путь вниз по течению реки от пункта А до пункта В. На обратный путь против течения он затратил 8 часов 20 минут. Найти скорость теплохода, если путь от А до В равен 100 км. A) 16 км/час В) 18 км/час С) 12 км/час D) 15 км/час
- 3. Упростите: $\left(\frac{\sqrt{2a}-\sqrt{b}}{\sqrt{2a}+\sqrt{b}}-\frac{\sqrt{2a}+\sqrt{b}}{\sqrt{2a}-\sqrt{b}}\right)\cdot\left(\sqrt{\frac{b}{4a}}-\sqrt{\frac{a}{b}}\right)$. A) $2\sqrt{2}$ В) $\sqrt{2ab}$
- C) 2ab D) $\sqrt{2}$

- 4. Сколько цифр содержиться в числе 20¹⁴? A) 17
- B) 18 C) 19
- 5. a, b, c —целые числа, если $a^2bc = 1$, какое из следующих утверждений всегда верно?
 - A) $abc^2 = 1$
- B) $ab^{2}c = 1$
- C) bc = 1
- D) $ab^2 = 1$
- 6. Какое из следующих чисел является целым числом?
 - A) $0.002 \cdot 100 + \sqrt{11025}$ B) $8.2^2 1.8^2$ C) $\frac{34}{1.02} + \frac{5}{6\sqrt{0.0001}}$ D) $(\sqrt{2} 1)^2 + \sqrt{32}$

- 7. Зная, что x + 3y = 8, найдите (2x 6y): $(0.25x^2 2.25y^2)$. A) $\frac{1}{16}$ B) $\frac{6}{16}$ C) 4
- D) 1
- 8. График линейной функции отсекает от второй координатной четверти равнобедренный прямоугольный треугольник с длинами катетов, равными 3. Найдите эту функцию.
 - A) y = x + 3
- B) v = -x + 3
- C) v = x 3
- D) y = -x 3
- 9. В одной комнате сидят 9 человек, и их средний возраст 25 лет. В другой комнате сидят 11 человек, и их средний возраст 45 лет. Каков средний возраст всех 20 человек?
 - A) 40
- B) 36
- C) 35
- D) 32
- 10. Решите уравнения: $\sqrt{2022 + x\sqrt{2022 + x\sqrt{2022 + ...}}} = 2022$ A) 1 B) 2021 C) 2023 D) 2022

2-часть. Каждое задание оценивается 1,5 баллом

- 11. Пусть выражение a*b обозначает сумму цифр в произведении ab. Тогда (15*10)*(1510)
 - A) 15
- B) 6
- C) 9 D) 10
- 12. Найдите сумму всех действительных решений уравнения $\sqrt{2\sqrt{x-1}+x} = \sqrt{x-1} + \frac{x}{2}$
 - A) 1
- B) $\sqrt{7} + 7$
- C) $\sqrt{7} + 1$
- D) 7
- 13. ABC прямоугольный треугольник с гипотенузой AB. На отрезке AB взяты точки K и M, здесь AK = AC и BM = BC. Найдите угол KCM. A) 30° B) 45° C) 60°
- 14. При каких значениях параметра p оба корня уравнения $x^2 5x + 4 = 0$ лежат на отрезке

 - [p; 3p+2]? A) $\frac{2}{3} \le p \le 2$ B) $\frac{1}{3} \le p \le 1$ C) $-\frac{2}{3} \le p \le 0$ D) $\frac{2}{3} \le p \le 1$
- 15. Упростите: $\left(\frac{1+\sqrt{1-x}}{1-x+\sqrt{1-x}} \frac{1-\sqrt{1+x}}{1+x-\sqrt{1+x}}\right)^2 \cdot \frac{x^2-1}{2} + \sqrt{1-x^2}$. A) 0 B) -1 C) 1
- D) x

Олимпиадные задания (III этап) МАТЕМАТІКА 9

16. Найдите среднее арифметическое целых решений неравенства	$9+5(\sqrt{x})^2$	10
	${x^2+3}$ >	x+4

- A) 2,5
- B) 1
- C) 2
- D) 1,5
- 17. Какой цифрой заканчивается произведение 7 · 27 · 47 · 67 · 87 · ... · 1987 · 2007?
 - A) 1
- B) 3
- C) 7
- D) 9
- 18. Диагональ ранобедренной трапеции является биссектрисой тупого угла. Найдите отрезок соединяющий середины диагоналей трапеции, если большее ее основание равно 17, а периметр равен 56. A) 5 B) 8 C) 6 D) 9
- 19. Сколько всего есть четырехзначных чисел, которые делятся на 19 и оканчиваются на 19?
 - A) 4
- B) 5
- C) 3
- D) 8
- 20. Среди целых чисел от 8 до 17 включительно зачеркните как можно меньше чисел так, чтобы произведение оставшихся было точным квадратом. В ответе укажите сумму всех вычеркнутых чисел. A) 41 B) 38 C) 55 D) 57

3-часть. Каждое задание оценивается 2,6 баллом

- 21. В группе 40 туристов. Из них 20 человек говорят по-английски, 15 по-французски, 11 по-испански. Английский и французский знают семь человек, английский и испанский пятеро, французский и испанский трое. Два туриста говорят на всех трёх языках. Сколько человек группы не знают ни одного из этих языков?
- 22. Если $\begin{cases} x^2 4y = -7 \\ 0.5y^2 x = 1 \end{cases}$ найдите x + y A) 3 B) 4 C) 2 D) 1
- 23. Если $m*n = \begin{cases} m-2n, & m>n \\ mn-n, m \leq n \end{cases}$, найдите 55 * (5 * (2 * 6))
- 24. В треугольнике ABC на продолжении медианы CN за точку C отметили точку K так, что CK = BN. Известно, что угол $BNC = 60^{\circ}$ и AC = 4, найдите BK
- 25. Если $b^a + 20 = \overline{ab}$ здесь a, b цифры, найдите 6b 2a.
- 26. Если $a 8 = \sqrt{\frac{24}{a}}$, найдите $a \sqrt{6a}$
- 27. ABCD выпуклый четырёхугольник. Если $\angle BDC = 3\angle CAD = 2\angle BAC, AD = CD$.

Найдите
$$\angle ABD + \angle ACB$$

28. Hisoblang:
$$\left(\frac{\sqrt{(12+\sqrt{143})^3}+\sqrt{(12-\sqrt{143})^3}}{\sqrt{(14+\sqrt{195})^3}-\sqrt{(14-\sqrt{195})^3}}\right) \cdot 58$$

- 29. n и m целые числа, 2nm + n = 14 и $nm \geqslant 9$ найдите 2m 3n.
- 30. В правильном шестиугольнике ABCDEF на прямой AF взята точка X так, что $\angle XCD = 45^\circ$. Найдите угол $\angle FXE$.